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A general problem of signal detection in a background of 

unknown Gaussian noise is addressed, using the techniques of 

statistical hypothesis testing. Signal presence is sought in one data 

vector, and another independent set of signal-free data vectors is 

available which share the unknown covariance matrix of the noise 

in the former vector. A likelihood ratio decision rule is derived and 

its performance evaluated in both the noise-only and signal-plus- 

noise cases. 
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In a well-known paper [1], Reed, Mallett, and 
Brennan (RMB) discuss an adaptive procedure for the 
detection of a signal of known form in the presence of 
noise (interference) which is assumed to be Gaussian, but 
whose covariance matrix is totally unknown. Two sets of 
input data are used, which for convenience will be called 
the primary and secondary inputs. The possibility of 
signal presence is accepted for the primary data, while 
the secondary inputs are assumed to contain only noise, 
independent of and statistically identical to the noise 
components of the primary data. 

In the RMB procedure, the secondary inputs are used 
to form an estimate of the noise covariance, from which a 
weight vector for the detection of the known signal is 
determined. This weight vector is then applied to the 
primary data in the form of a standard colored noise 
matched filter. The implication is that the output of this 
filter is compared with a threshold for signal detection, 
but no rule is given for the determination of this 
threshold, whose value controls the probability of false 
alarm (PFA). In fact, no predetermined threshold can be 
assigned to achieve a given PFA, since the detector is 
supposed to operate in an interference environment of 
unknown form and intensity. 

Instead, the RMB paper provides an analysis of the 
signal-to-noise ratio (SNR) of the filter output, for given 
values of the secondary data. This SNR is a function of 
the secondary data and is therefore a random variable. 
The probability density function (PDF) of this SNR is 
deduced, and this PDF has the remarkable property of 
being independent of the actual noise covariance matrix; 
it is a function only of the dimensional parameters of the 
problem. In the intended application, the secondary data 
would (hopefully) be sufficient in quantity to support a 
good estimate of the noise covariance, and a threshold 
could presumably be determined from this estimate. The 
resulting final decision statistic is then more complicated 
than the matched filter output itself, and being a 
nonlinear function of the secondary inputs, the detection 
and false alarm probabilities are not functions of the SNR 
alone, leaving the actual performance of the procedure 
undetermined. 

In this study the original problem (with a slight 
generalization of the signal model) is reconsidered as an 
exercise in hypothesis testing, and the ad hoc RMB 
procedure is replaced by a likelihood ratio test. No 
optimality properties are claimed for this test, involving 
as it does the maximization of two likelihood functions 
over a set of unknown parameters. The form of the test 
is, however, reasonable, and the RMB matched filter 
output appears as a portion of the likelihood ratio 
detection statistic. This test exhibits the desirable property 
that its PFA is independent of the covariance matrix 
(level and structure) of the actual noise encountered. This 
is a generalization of the familiar constant false alarm rate 
(CFAR) behavior of detectors using scalar input data, in 
which only the level of the noise is unknown. In 
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addition, it is shown that the effect of signal presence 
depends only on the dimensional parameters of the 
problem and a parameter which is the same as the SNR 
of a conventional colored noise matched filter. 

The PDF of this detection statistic itself is derived 
here, for both the noise-alone case and the signal-plus- 
noise case. In the former, the PDF proves to be very 
simple, and the dependence of the PFA on threshold is 
exactly the same as that of a simple scalar CFAR 
problem, in which detection is based on one complex 
sample and the threshold is proportional to the sum of the 
squares of a number of independent noise samples. The 
corresponding PDF in the presence of a signal component 
exhibits the effect of an SNR loss factor, which obeys the 
same beta distribution as the SNR loss factor studied in 
the RMB paper. In fact, the behavior of the detector is 
identical to that of a simple scalar CFAR system with a 
fluctuating target, where the latter fluctuation is governed 
by the beta distribution instead of one of the more usual 
radar models. 

The final detection probability of the likelihood ratio 
algorithm is obtained in the form of a finite series. The 
method used here leans heavily on the techniques of the 
RMB paper (which in turn leans directly on the analysis 
of Capon and Goodman [2]) with the difference that the 
matrix transformations required here are carried out 
directly on the variables of the problem, so that much 
less reliance is placed on known properties of the Wishart 
distribution. 

It should be emphasized that the output of this 
likelihood ratio algorithm, like that of the RMB 
procedure, is a decision on signal presence, and not a 
sequence of processed data samples from which the 
interference component has been reduced (nulled) and in 
which actual signal detection remains to be accomplished. 
For this reason the direct application of the algorithm to a 
real radar problem would require the storage of data from 
an array of inputs (such as adaptive array elements), 
perhaps also sampled to form range-gated outputs for 
each pulse and collected for a sequence of pulses (such as 
those forming a coherent processing interval). The 
practicality of such a processor, which involves the 
inversion of a correspondingly large matrix, or the 
possibility of its simplification, are topics not addressed 
in this paper. 

II. FORMULATION OF THE PROBLEM 

The mathematical setting for the formulation of this 
detection problem is actually quite general, but it is 
introduced here first in a relatively specific way, in order 
to lend concreteness by way of example. Suppose that the 
antenna system of a radar provides a number, say Na, of 
RF signals. These may be the outputs of array elements, 
subarrays, beamformers, or any mix of the above. The 
radar waveform is supposed to be a simple burst of 
identical pulses, say A^ in number, and target detection is 
to be based upon the returns from this burst. 

In effect, the radar front end carries out amplification, 
filtering, and reduction to base band, at which point the 
quadrature signals are subjected to pulse compression, the 
final stage of filtering. The order in which these things 
are carried out is immaterial to the present model, since it 
is not addressed to the problems of realization and 
channel matching, although these are of great importance 
in practice. The / and Q output pairs are next sampled to 
form range-gate samples for each pulse, say, Ng range 
gates/pulse. This results in a total of NaNpNg complex 
samples for the burst. Signal presence is sought in one 
range gate at a time, hence the primary data consists of 
the NaNp samples from a single, unnamed range gate. 
These samples are arranged in a column vector z of 
dimension N = NaNp. The secondary data consist of the 
outputs of K range gates, forming a subset of the Ng— 1 
remaining ones, and these are described by the set of 
vectors z(k), where k = \ ... K. The decision rule will 
be formulated in terms of the totality of input data, 
without the a priori assignment of different functions to 
the primary and secondary inputs. 

The secondary data are assumed to be free of signal 
components, at least in the design of the algorithm, and 
any selection rules applied to make this assumption more 
plausible are ignored. The primary data may contain a 
signal vector, written in the form bs, where b is an 
unknown complex scalar amplitude, and s is a column 
vector of N components describing the signal which is 
sought. The modeled variation of signal amplitude and 
phase among the array inputs is included in s, as well as 
pulse-to-pulse variations, such as those relating to a 
particular target Doppler velocity. The problem of 
unknown Doppler, or other unknown signal parameters, 
is mentioned briefly below. It should be noted that the 
signal vector s can be normalized in any convenient way, 
since an unknown amplitude factor is already included, 
and we retain the freedom to assign a norm to 5 at a later 
point, where it will be most advantageous to make a 
specific choice. 

The total noise components of the data vectors, 
representing all sources of internal and external noise and 
interference, are modeled as zero-mean complex Gaussian 
random vectors. The noise component of the primary 
vector z is characterized by the unknown covariance 
matrix M. Each of the z(k) is assumed to share this 
N x N covariance matrix, and the vectors z and the z(k) 
are all mutually independent. All Gaussian vectors are 
assumed to have the circular property usually associated 
with / and Q pairs. 

The key features of this model are the Gaussian 
assumption, the independence of the range-gated output 
vectors, and the assumption of a common covariance 
matrix. The structure of the N vectors, in particular the 
doubly indexed model used to account for multiple pulses 
and multiple array outputs, is not exploited at all in the 
following, and a notation for the components of these 
vectors is not required. 
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III. THE LIKELIHOOD RATIO TEST 

Consider a single input vector from the secondary 
data set, say z(Jfc). If the covariance matrix of this vector 
is M, 

M = E{z(k) z(k)f) 

then the /V-dimensional Gaussian PDF of this complex 
random vector is 

/[*<*)] - 
1 ,-*(*)' M~l r(*) 

TT 

In the notation used here the double bars signify the 
determinant of a matrix, and the superscript dagger 
symbolizes the conjugate transpose of a vector. Each of 
the secondary data vectors has this same PDF, and under 
the noise-alone hypothesis, the primary vector does so as 
well, hence the joint PDF of all the input data is the 
product: 

/0[2,Z(1),  ...,2(/0]   =/[z]    II   /[!(*)]. 

If v is any N vector, we can write the following inner 
product in the form of a matrix trace: 

vfM'lv = tr(M_1V) 

where V is the open product matrix 

V = vvf. 

When this equivalence is applied to all the factors of the 
joint PDF, it is seen that the latter may be written in the 
convenient form 

exp[-ti(M-1 T0))\ /0[z,z(l), ...,z(tf)l 

where 

= [vK\\M\\ 

•)• 

Under the signal-plus-noise hypothesis, the z(k) have 
the same PDF as before, and the PDF of the primary 
vector is obtained by replacing z by 

z - E{z} = z - bs. 

The resulting joint PDF of the inputs is then 

fil2,z(\) z(K)} UN\\ ||A/||exp[-tr(A/-T, 

JJC+l 

where now 

T 1 = J^Ti ((z~ 
bs)(z~bs)f  +   21    2{k)z{kV 

*«=1 ) 

In the likelihood ratio testing procedure, the PDF of 
the inputs is maximized over all unknown parameters, 
separately for each of the two hypotheses. The ratio of 
these maxima is the detection statistic, and the hypothesis 
whose PDF is in the numerator is accepted as true if it 

exceeds some preassigned threshold. The maximizing 
parameter values are, by definition, the maximum 
likelihood (ML) estimators of these parameters, hence the 
maximized PDFs are obtained by replacing the unknown 
parameters by their ML estimators. 

We begin with the noise-alone hypothesis, 
maximizing over the unknown covariance matrix M. Of 
all positive definite M matrices, the one which maximizes 
the expression inside the curly brackets of this PDF is 
simply r0. This is equivalent to the statement that the 
ML estimator of a covariance matrix is equal to the 
sample covariance matrix, which is well known [3]. 
When this estimator is substituted in the PDF, the trace 
which appears there becomes the trace of the N x N unit 
matrix, which is just N, and we find 

T/o = (^w) 
The same procedure applied to the signal-plus-noise 

hypothesis yields the formula 

'       \(e*)N\\T,\\) 
max /, 

M 

and it remains to maximize this expression over the 
complex unknown signal amplitude b. Since b appears 
only in this PDF, we can form a likelihood ratio L(b) at 
this point and subsequently maximize it over b. It is more 
convenient to work with the (K+ l)st root of this ratio, 
and we put 

Obviously, 

.... _ lir0|| 

and the final likelihood ratio test takes the form 

max C{b) = -EjL > [0. 
b nun || T, || 

The threshold parameter on the right will evidently be 
greater than unity, since the denominator on the left 
equals the numerator for the choice b = 0, and we are 
maximizing over b. 

To proceed, we define the matrix 

K 

which involves only the secondary data. This matrix is K 
times the sample covariance matrix of these data, and it 
satisfies the well-known Wishart distribution. The only 
property of this distribution that we need here is the fact 
that for K > N, a condition we now impose, the matrix S 
is nonsingular with probability one. S is, of course, 
positive definite, and hence Hermitian. We use an easily 
proved Lemma to evaluate the determinants of both sides 
of the equation 
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(K+\)T0 = 5 + zzf 

with the result 

(jr+D"ir0| = ||5||(1 +z*s->z). 

Similarly, we have 

<jr+i)*ir,| = \\s\\(i + (z-bSys-Hz-bs)). 
Now is a good time to minimize this quantity over b, 

and we do this by completing the square: 

(z-bsyS'l{z-bs) = (z'S']z) + H2(5+S-'s) 

- 2Re{b(zfS-]s)} 

= (z'S'^) + (s'S-]s) 

b - 
(s'S-'z) 

(sfS~ls) 

The minimum is clearly attained when the positive factor 
containing b is made to vanish, and the resulting 
likelihood ratio is given by 

1  + (2+5_,z) 
[ = max L\b) = 

b 
1  + (zrS~]z) - 

|(/5-»z)!2 

(sfS~ls) 

It is convenient to introduce the quantity T\, defined by 

K^s-'z)!2 

71      (J^-'J) [1 +(ztS~lz)] 

so that 

1 
/ =  

1   -  T! 

Then the test 

is equivalent to the test 

*1  > Tlo   = • 
Z0 

We note that T\0 lies between the values zero and one. 
If the target model is generalized, so that the signal 

vector still contains one or more unknown parameters 
(such as target Doppler), the likelihood ratio obtained 
above must next be maximized over these parameters. It 
is clear that this is equivalent to maximizing T\ itself over 
the remaining target parameters. This maximization 
generally cannot be carried out explicitly, and the 
standard technique is to approximate it by evaluating the 
test statistic, in this case r\, for a discrete set of target 
parameters, forming a filter bank, and declaring target 
presence if any filter output exceeds the threshold. Our 
purpose in discussing this here is only to show how our 
test can be generalized in this straightforward way, but 
from now on we ignore any additional target parameters, 
which is equivalent to concentrating on the performance 
of a single member of the filter bank. 

For comparison with the RMB procedure, we 
introduce M, the ML estimator of the noise covariance, 
based on the secondary data alone. We have already 
noted that this estimator is equal to 

*-Is. 
The likelihood ratio test can then be written in the form 

K^Xär1*)!2 

(sfM~ls) [l+p (z+M_1z)] 
K 

> Ki\0. 

We note that the secondary inputs enter this test only 
through the sample covariance matrix M and also that 

(sfM-lz) = (wf z) 

where vv is the RMB weight vector 

The RMB test itself is just 

|(vvz)|2 > threshold 

which has the form of the colored noise matched filter 
test, with M replacing the usual known covariance matrix 
of the noise. 

The presence of the signal-dependent factor in the 
denominator of the expression for T\ causes this detection 
statistic to be unchanged if the signal vector is altered by 
a scalar factor. Since the normalization of this vector has 
been left arbitrary, this invariant is highly desirable. In 
effect, this factor in the denominator is normalizing s for 
us, in terms of the estimated noise covariance. The entire 
detection statistic is also invariant to a common change of 
scale of all the input data vectors, a minimal CFAR 
requirement. Further properties of i) are developed in the 
following section. 

In the limit of very large K, one expects the estimator 
M to converge to the true covariance matrix M at least in 
probability. Moreover, it can be shown that the quantity 

(z+A/_,z) 

an inner product utilizing the actual covariance matrix 
instead of its estimator, obeys the chi-squared 
distribution, with 2N degrees of freedom, and hence this 
term, when divided by K, converges to zero in 
probability, as K grows without bound. In this sense the 
likelihood ratio test passes over into the conventional 
colored noise matched filter test, as the number of sample 
vectors in the secondary data set becomes very large. 

IV. PROPERTIES OF THE LIKELIHOOD RATIO TEST 

The likelihood ratio test is discussed in terms of the 
random variable r\, the decision statistic eventually 
obtained in the preceding section. The definition of -q, as 
well as that of the matrix S on which it depends, are 
reproduced here for convenience: 
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T)   = ^=2 M-y2z(k)z(kyM'm = 2 *(*)*(*)*■ 

5 =  £  z<*) z(*)+. 
*=1 

The random variable TJ is, of course, a function of both 
the primary and secondary data, and as a preliminary to 
discussing its actual PDF, some useful properties are first 
derived. We begin with the noise-alone case, and assume 
that the actual noise covariance matrix is M. 

The matrix M is positive definite, and hence a 
positive definite square root matrix can be defined. Since 
M can be diagonalized by a unitary transformation, it can 
be represented in the form 

M - U A t/f 

where the columns of the unitary matrix U are 
eigenvectors of M, and A is diagonal. The diagonal 
elements of A, say X(/i), (H= 1 ... N), are the real, 
positive eigenvalues of A/. In case of degeneracy of an 
eigenvalue, the corresponding eigenvectors are assumed 
to have been orthogonalized. The square root may be 
defined by the representation 

where A,/2 is diagonal, with diagonal elements [X(/i)]l/2. 
The matrix M~m is similarly defined in terms of A~,/2, 
and it is easily seen to be the inverse of Mm. Uniqueness 
of the square roots is not necessary for our purpose, only 
their existence and positive definite (hence also 
Hermitian) character. 

Now consider the vector 

z = M~mz 

and the similarly transformed secondaries 

*(*) = Ar1/2z(*). 

The new vectors are zero-mean Gaussian variables, but 
with covariance matrix equal to IN, the N x N identity 
matrix. This follows directly from the definitions: 

E{z zf] « M-»* E{z z^M~m = M~mMM -1/2   _ 
= IK 

with identical reasoning for the transformed secondaries. 
The linear transformation introduced here is, of course, a 
whitening transformation. 

We note that the scalar r\ depends on the data and 
signal vectors only through inner products. By inverting 
the whitening transformation we may evaluate, for 
example, the product 

(zfS~lz) - {z*MmS-lMmz) 

= (zt(Af-1/25A/-,/2)-,z). 

We define the new matrix 

<£ = M-mSM-m 

and substitute for 5, finding 

*=i *-i 

Therefore, the new S matrix is K times the sample 
covariance matrix of the whitened secondaries, and the 
random variable 

2 -(z*S~lz) = (zf<£~lz) 

is seen to be independent of M, being expressible as a 
function of K+ 1 independent Gaussian vectors, each of 
dimension N, and each sharing the covariance matrix, lN. 
The PDF of 2, like that of the RMB signal-to-noise ratio, 
is therefore a universal function of the dimensional 
parameters, TV and K, alone. 

The other inner products in the decision statistic are 
handled in an analogous manner; thus 

where t stands for the whitened signal vector 

t = M~l/2s. 

At this point we make the deferred definition of signal 
normalization, by taking t to be a unit vector: 

(tU) = (s^M-is) ■ 1. 

This choice gives specific meaning to the signal 
amplitude parameter b, whose square is now a proper 
signal-to-noise ratio, for which we introduce the symbol 
a: 

a - |»|* - (E{zyM->E{z}). 

When the obvious substitutions are made in the final 
inner product, we obtain 

10^-',)|2 

Tl   = (fT<S-,f)[l+(^-,«)l t  c-l. 

The dependence on M is now confined to /, and it is 
shown below that even this dependence on the true 
covariance matrix is illusory. When a signal is present, z 
is replaced by 

z = bs + n 

where n has all the properties attributed to z in the noise- 
alone case. In this situation, the whitened data vector is 

z - M~mz = bt + v 

where 

v = AT1/2/i 

which is statistically identical to the whitened data vector 
in the noise-alone case. We have therefore found that 
when a signal is present, the PDF of t) depends on M 
only through b and t, and the dependence on the unit 
vector t is again only apparent, as we now show. 

Suppose the whitening transformation is followed by a 
unitary one, in which the whitened vectors are expressed 
as the products of a unitary matrix and a new set of 
random vectors. These new random vectors are 
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statistically indistinguishable from their predecessors, and 
it would only be confusing to introduce a new notation 
for them. Tracing this transformation through the inner 
products, we find that only the normalized signal vector 
is changed: t is replaced by 

where Ul is the unitary matrix characterizing this last 
transformation. Any unit vector in the complex N space 
can be realized as f, by such a transformation. In 
particular, we can cause r, to be a coordinate vector, for 
which a single element is unity, the remaining (^V— 1) 
elements vanishing. It is for this reason that the PDF of J\ 

depends on M only through the meaning of the signal 
amplitude parameter, b. In fact, this PDF can depend 
only on b, N, and A", and hence the false alarm 
probability of the likelihood ratio detector, namely 

PFA = PT{T) > TI0} 

is independent of M, and this is the generalized CFAR 
property claimed in Section I. 

V. PROBABILITY DISTRIBUTION OF THE TEST 
STATISTIC 

We now take advantage of our freedom to make a 
unitary transformation, and choose for /, a vector whose 
first element is unity, all others being zero. This can be 
accomplished by choosing for (/, a matrix whose first 
row is the conjugate transpose of /, and whose other rows 
are the conjugates of unit vectors orthogonal to t. 
Understanding that this choice has been made, we drop 
the subscript on t, so that r\ is still given by the formula 
in Section IV. 

This form for / makes it expedient to decompose all 
vectors into two components, an A component consisting 
of the first element only, and a B component consisting 
of the rest of the vector. Thus we write 

-[;:] 
where the A component is a scalar and the B component 
is an (A/- 1) vector. In this notation, the signal vector is 
just 

-M 
the zero being (N- 1) dimensional. Matrices are 
decomposed in analogous fashion, and we write 

_    <$AA   <^AB 

\jSBA    £BB\ 

Note that the AA element is a scalar, the BA element is 
an (A7 — 1) dimensional column vector, and so on. We 
also give a name to the inverse of this matrix, 
decomposing it as well: 

v-l = Cp=   \*>AA     *>"] 
\&BA     &BB\' 

With this notation we have, simply, 

while 

(f^-'z) = [10] 
\&BA     &BB\   UJ 

=  <P. AAZA +  <P, ABZB- 

It is important to keep in mind that we now have a four- 
fold decomposition of the total input data set into primary 
and secondary vectors, each of which is divided into A 
and B components. 

According to the Frobenius relations for partitioned 
matrices, 

&AA   =   (^AA ~ ^AB^BB       <^BA) 

which is a scalar, and also 

&RA  =   -<S, BB X£BA&AA- 

Since the N x N sample covariance matrix and its 
inverse are Hermitian, we obtain 

&AB   = &BA     =    -&AA<£AB<SBB 
-1 

and therefore 

(«♦-T-1«) =<PAA(*A-£AB<SBB-1'B)- 

The final inner product is expanded as follows: 

U*^-»«) = <PM\zA\
2 + 2ReM^W + UI&BB*B) 

where we have applied the identity 

(ufv) = (v+w)* 

to the (N— 1) dimensional inner product 

Next we complete the square in this last expression, 
writing 

(/<$-'.) =<PM\*A + <PZI&AB*B\2 

+ *B<SPBB-&M&BA&AB)*B 

and by using a Frobenius relation in reverse we see that 

Finally, combining these results, we find 

(/^T1*) = <PM\zA - <£„<££*B\2 + UB-SÜZB). 

When these evaluations are substituted into our 
expression for TJ, the result can be expressed in the 
apparently simple form: 

T] = 1 + X + 1B 

We have introduced here the notation 
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2*B  ~~   UB-^BB ZB) 

which is retained, and the temporary notation 

X ~ ^AA]^   ~   -^AB^BB ZB\   • 

Note that XB is just like the quantity 2 defined earlier, 
except that the dimensionality of the vectors involved is 
now N- 1. The last form of the decision test, namely 

V >TTo 

is evidently equivalent to 

X> 
1 - % 

(1+2*). 

We leave the test in this form for a time, while we 
examine the statistical properties of the quantities which 
enter into it. 

A previous evaluation for the leading factor in X can 
be used to obtain the following form: 

X = \ZA   ~  ^AB^BB ZB\ 

$AA   ~  ^AB^BB ^BA 

We make use of the definitions to express the 
denominator as a sum: 

=VU   ~   <=*AB<=>BB <^>BA 

= 2 (*(*>-^-w*<*>)*<*)*. 
*=1 

This is the same as the sum of squares 
K 

2 k<*> - «5u«ö*(*)l2 

because the terms supplied to complete this square add up 
to zero: 

K 

1 2 U(*)-^*%^(*))(^Ä»(*))* 

=    2    zA(k)2B(k)^sBl<^BA-^AB^ 
*-l 

HB 

x  2 *(*)*{&<Sül<Sk 
*=i 

'/M 

—   ^AB^BB <£BA ~ ^AB^BB ^BB^BB ^BA   ~   ". 

The evaluation of the sums here follows from the 
definitions of the partitioned matrix elements. We 
introduce the notation 

?(*)-*(*)   "   ^AB^B~BXzBik) 

for the terms of the sum, and the analogous notation 

y S ZA   ~  ^AB^BB *B 

for the quantity appearing in the numerator of Xt so that 
the likelihood ratio test can be written in the more 
explicit form 

v       b\2 
x
 - T  

2 lx*)l2 
> % 

1  " T|o 
(1+2,). 

We proceed by fixing the B vectors temporarily, and 
consider the probability densities of all quantities entering 
into the decision statistic to be conditioned on these 
values. The conditional probabilities of detection and 
false alarm are evaluated first, and the condition is then 
removed by taking expectation values over the joint PDF 
of the B vectors. With the B vectors fixed, only the K + 1 
scalar A components are random, and we show now, 
under this condition, that > and the y{k) are Gaussian 
variables, that y is uncorrelated with the y(k), and that 
the latter have a covariance matrix with simple properties. 

Using the definitions of the y$ and of the AB matrix 
element which enters there, we can express these 
quantities in the form 

-M-2 
*=i 

zA(k)zß(k)   <$BB ZB 

and 

y(k) = zA(k) ~ 2 ^OWOf-W*(*). 
j»i 

This represents the ys as linear combinations of the A 
components, and hence proves their conditional Gaussian 
character. Moreover, the y(k) have zero mean in all 
cases, while the conditional mean, written £Ä, of y in the 
general case is 

EB v = EzA = b 

as a result of our choice of signal vector. 
The linear dependence of the y% on the A components 

is best expressed in terms of the quantities 

and 

Q(i,k) = zB(iy£BB ZBW 

which are constants under the conditioning. Obviously, 

V  =  ZA   ~   2    *<*)*<*) 

and 

K 

y(k) = 2A(k) - 2  *(Oß(U). 
*=i 

The q{k) may be considered as the components of a K 
vector q, and the Q(i,k) as the elements of a K x K 
matrix Q. The desired properties of the y* flow from the 
following facts about this new vector and matrix: 

Qq = q 

and 

Q2 = Q- 
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To prove the first of these, we write it out in 
component form: 

K K 

2   Q(k.Oq(i)   =    2    ZB(ky^BBl*B(i)*B(i?^BBl:B- 
i-l i-l 

The sum over / regenerates the BB matrix element: 

K 

2 **(o*Ä(i)
+ = sBB 

/=i 

y(k) = 2 *(0[»a.*) - ßtt*)]. 
/=1 

Using the independence of the A variables again, we 
obtain 

Ey(k)y(n)* = 2  [8(a) - ß(U)][8(/,/i) - ß(i\#i)]* 
i = i 

= 8(*,n) - ß(n,*) - ß(*.n)* 
AT 

+ 2 ß(U)ßo»*- 
(as happened when the denominator of X was expressed 
as a sum of squares), and the result follows immediately. 
The idempotent character of Q is proved in the same , = 1 

way. We also note that Q is Hermitian, and that its trace     since Q js Hermitian and idempotent, we fmd ,he simple 

result is/V-1: 

Tr(ß) =  2  zB(k)f^BJ za(k) 
k=\ 

=   M^BB1   2    *(*>*(*)*) 

= Tr(/„_,) = N - 1. 

Note that we are dealing with the trace of a K x K 
matrix on the left side here, and of (A7- 1) x (A/- 1) 
matrices on the right. All of these results will be required 
in the following. 

The fact that v and the y(k) are conditionally 

Ey(k)y(n)* = b(n.k) - Q(n,k). 

The likelihood ratio test is now rearranged slightly to 
read 

Ivl2 

1 + X* 
> •no 

l - % *=i 
2 Iv(*)l2- 

In view of fact that the conditional variance of y equals 
the denominator on the left, it makes sense to define a 
normalized variable 

w 
(i+£*),/2 

the independence of   Conditioned on the B vectors> w is Gaussian and 

independent of the y(k). It has a conditional variance of the A components themselves: 

EByy(k)* = ~ &B (% qdhA(i)zA(k)A 

+ EB ( 2 qdhAU) 2  *A(")*Q(n.k)*) 

=  -q(k) + 2 qU)Q(k.i) = 0. 
/=i 

Next, consider the conditional variance of y: 

EB\y-b\2 =1  +  2   k(*)|2- 
* = i 

Substituting for the q(k), we have 

K K 

2    M*)|2   =    2    'B^M'BikhBik?^ 

unity, and a conditional mean value: 

b 
ERw = 

0+£fl)
,/2 

In the noise-alone case, the conditioning has no effect on 
the PDF of w. The sum over k is also given a name: 

T - £ \m\* 
k=\ 

and the test is now written 

|w|2>(f0-l)7\ 

where the original threshold constant has been 
reintroduced. In fact, it is easily verified that our original 
likelihood ratio is given by 

\w\2 

C = 1 + —L- 
T 

We now turn to the properties of T. Given the B 
vectors, the joint PDF of the y(k) is zero-mean Gaussian 
with covariance matrix J: 

T»,    ,   #       u u.   f /(U) - 8(i.it) - Q(k,i). This last result is responsible for a significant 
simplification of the statistics of the likelihood ratio test. The conditional characteristic function of T is therefore 

Finally, we compute the conditional covariance of the .         =      , (Kr> _ .,   _      ..,_, 
y(k). We use the notation 8(/.*) for the elements of the B{

 ' ~   B{€
    

l " "             " 
unit matrix, so that y(k) can be written 

BB 2B 

—   ZB^BB ZB   ~   ^B 

and hence 

EB\y-b\2 = 1 + 1B. 

122 

Since Q is idempotent, its eigenvalues are either zero or 
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one, and from the value of its trace we see that Q must 
have exactly N— 1 unit eigenvectors. It follows that J has 
K+ 1 -N unit eigenvectors, the others being zero, and 
thus 

4>fl(\) = (l-iX)-<*+1-">. 

This is the characteristic function of a chi-squared random 
variable, and the PDF of T is simply 

fa(T) = 
TK -N 

{K-N)\ 
,-T 

It is remarkable that the statistical properties of T are 
independent of the actual values of the conditioning B- 
vectors, and we can consequently drop the subscript on 
its PDF. Moreover, T is statistically equivalent to the sum 
of the squares of K+ 1 -N independent, complex 
Gaussian variables, each of which has zero mean and unit 
variance. If we let w(k), (*= 1 ... K + 1 -A0, be such a 
set, then T is statistically indistinguishable from the sum 

K+\-N 

K*)|2. 

The properties of the likelihood ratio test are therefore 
identical to the properties of the simple test 

M2>«>-i)   2   \w(k)\2 

where the w(k) are now also taken to be independent of 
w. The probability of the truth of this inequality is still 
conditioned on the B vectors, but this conditioning 
appears only through the quantity Sfl, which is contained 
in the conditional mean of w. 

This equivalent decision rule represents the behavior 
of a simple scalar CFAR test, in which the power in one 
complex sample (a single radar hit), being tested for 
signal presence, is compared to a threshold proportional 
to the sum of the powers of K+ 1 —N samples of noise. 
This problem is quite familiar, and the test just described 
is also a likelihood ratio test in the corresponding 
situation. The performance of the scalar CFAR detector is 
very simple, and in particular, its PFA is just 

\K+l-N 

Co 

In this case, when the signal amplitude is zero, the 
conditioning B vectors do not appear at all, and hence 
this simple formula gives the PFA for our original 
likelihood ratio test. 

The probability of detection (PD) of the scalar CFAR 
test is also well known, and in our case it depends on the 
conditional SNR, which is the squared magnitude of the 
conditional mean of w. In terms of the colored noise 
matched filter SNR a defined earlier, and the quantity 

1 
r = 

1 + XB 

this conditional SNR is just ra. The factor r represents a 

loss factor, applied to the SNR, and caused by the 
necessity of estimating the noise covariance matrix. The 
PD of the CFAR detector can be expressed in a 
particularly convenient way as a finite sum [4]: 

1 

to *=i i)*-w>(z 
where L = K+l-N. The function G which enters here 
is itself a finite sum: 

k-\ 

Gk{y) = e-y 2    ~ 
«=o    n! «=o 

In order to complete our computation of the PD of the 
likelihood ratio test, we must take the expectation value 
of this conditional PD over the joint PDF of the B 
vectors. These, however, enter the final result only 
through the loss factor r which acts as a fluctuation 
model for the signal. Unlike more familiar fluctuation 
models, this one is characterized by a factor lying in the 
range zero to one. The present situation is similar to that 
discussed in the RMB paper, except that besides an SNR 
loss, our test will suffer a CFAR loss as well, when 
compared with a colored noise matched filter test in 
which everything is known concerning the noise or 
interference. 

Although the loss factor found here depends on the 
primary data, through its B component, while the RMB 
loss factor is a function only of the secondary data, it 
turns out that the two factors have exactly the same PDF. 
The proof of this interesting result is deferred to the 
Appendix, in which the RMB loss factor is also 
expressed in our notation, and the evaluation of the PDFs 
of both these quantities is carried out in parallel. 

The PDF shared by these loss functions is the beta 
distribution: 

(AM^l)! 
n '       L\(N-2)\   l       ' 

and the final expression for the PD of our test can be 
written 

In this formula, the H functions are the expected values 
of the Gs: 

Hk{y) = Jo Gk{ry)f{r)dr. 

These integrals are elementary, although not simple, and 
their detailed evaluation is not given here. The results of 
Section VI are based on these formulas. 

VI. NUMERICAL RESULTS AND DISCUSSION 

The performance of the likelihood ratio test depends 
only on the dimensional integers N and K and the SNR 
parameter a. The latter is a function of the true signal 
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strength and the intensity and character of the actual noise 
and interference. Our analysis deals with a very general 
problem, and nothing can be said about the anticipated 
values of a. The ability of a system to function 
effectively in interference depends principally on the 
arrangements which have been made in its design to 
achieve a good colored noise matched filter SNR in its 
intended environment. These arrangements will usually 
take the form of diversity of RF inputs in one form or 
another. An additional requirement is the need to have 
inputs available from which the actual noise 
characteristics can be estimated, and this is the aspect of 
the problem which has been addressed here. In particular, 
for given values of PD and PFA, we can determine what 
SNR is actually required to achieve those values using the 
likelihood ratio detector, and compare that number with 
the SNR which would be adequate to achieve identical 
performance if the noise covariancö matrix were known 
in advance. The difference is the penalty for having to 
estimate the noise covariance, and we expect that penalty 
to vary sharply with the number K of available secondary 
input vectors. 

This penalty has two components, one due to the 
CFAR character of the decision rule and another due to 
the effective SNR loss factor. The latter is expected to 
behave much as the results of the RMB analysis would 
predict, based on the statistical properties of the loss 
factor alone. The CFAR loss will decrease as the value of 
K increases, and it may be expected to depend largely on 
that parameter, while the SNR loss effect depends 
roughly on the ratio of K to N. 

These expectations are borne out by the numerical 
consequences of our analysis, as shown in the 
accompanying figures. In Figs. 1-4, PD is shown as a 
function of a, the SNR, for three detectors (PFA is fixed 
at 10"6 for these curves). The detector performing best is 
a matched filter with known noise co variance, and the 
worst is the likelihood ratio detector which, of course, is 
estimating the noise co variance. The middle curve 
(dashed) in these plots shows the performance of a 
simple, scalar CFAR detector using L = K+ 1 — N noise 
samples, and it differs from the behavior of the likelihood 
ratio detector only in that the SNR loss factor has been 
ignored. This detector is included in the comparison in 
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order to show how much of the degradation imposed by 
noise estimation is due to each of the two contributing 
effects. 

We note that doubling both K and N has little effect 
on the portion of the degradation due to SNR loss, while 
the CFAR part is reduced, simply because K is being 
increased. The curves also show the significant 
improvement which results from increasing the ratio of K 
to N. When this ratio is equal to 5, the SNR loss 
contribution to the performance degradation is about 0.9 
dB, in agreement with the mean value of the SNR loss as 
obtained from the beta distribution. Likewise, the CFAR 
contributions are directly comparable with the ordinary 
CFAR loss for a detector of nonfluctuating targets with 
no noncoherent integration (i.e., a single radar hit). 
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The detector performance is characterized in a 
different way in Figs. 5-8, which show the additional 
SNR required, when estimating the noise covariance, to 
achieve the same PD and PFA as a matched filter for 
known noise. In all these figures, the PD is specified at 
0.9, but the results will not depend strongly on the 
chosen PD level, since the curves of PD versus SNR are 
nearly parallel for the two detectors. Three PFA values 
are represented on each plot. The independent variable 
for these curves is the number of secondary vectors, and 
this variable always covers the range 2N through 57V, for 
4 different N values. The SNR loss is not strictly a 
function of the ratio K/Nt but generally decreases with 
increasing N, with this ratio held constant. The loss 
shown is the total loss, due to the CFAR effect and the 
SNR loss factor itself. 
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DETECTION PROBABILITY   09 

PFA = 10 c 
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35 
K 

Fig. 6. 

VECTOR DIMENSION: 20 
DETECTION PROBABILITY: 0.9 

PFA i 10 c 

i—r i—r 

VECTOR  DIMENSION:  40 
DETECTION PROBABILITY: 09 
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It was noted earlier that Ky the number of secondary 
vectors, must exceed N, the dimension of each of the 
data vectors, in order to have a nonsingular sample 
covariance matrix. It is clear from the results just 
discussed that K must exceed N by a significant factor if 
noise estimation is not to cause a serious loss in 
performance. Since N is the dimension of the total vector 
of data used for detection, the requirements on the 
number of secondaries can be extremely large. In the 
radar example mentioned in Section II, N was the product 
of the number of RF channels Na and the number of 
pulses /Vp in a coherent processing interval. To supply 
enough secondaries from range-gate outputs, other than 
the one being tested for signal presence, the bandwidth of 
the radar would have to exceed some minimum value. 

The chief reason for the requirement of many 
secondaries is the generality of our formulation, in which 
any interference covariance matrix is allowed. In the 
radar example, this includes the possibility of arbitrary 
correlation between interference inputs from pulse returns 
widely spaced in time, although it might well be realistic 
to assume independence (but not statistical identity) of the 
interference inputs accompanying distinct pulse returns. 
This is a more difficult problem, for which only an 
approximate solution has been found [5]. 

APPENDIX.    THE PROBABILITY DENSITY 
FUNCTION OF THE LOSS FACTOR 

The SNR loss factor derived in the text was expressed 
in the form 

r = 
1 

1 + 2« 

where 

Z,ß    =    Zß<£ßß  Zß. 

Before discussing the PDF of 2Ä, from which the PDF of 
r follows easily, we express the RMB loss factor p in our 
notation. From the RMB paper, 

Fig. 7. 
P = 

|<*f*)|2 

(sfM~ls)(wfMw) 
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where M is the actual noise covariance matrix, s is the 
signal vector, and w is a weight vector: 

w = kM~ls. 

In this last formula, M is the sample covariance 
matrix of the secondary data and k is an arbitrary 
constant. The loss factor itself is the ratio of the 
conditional SNR of the output of a filter which uses w as 
a weight, relative to the SNR of the colored noise 
matched filter for known M. The conditioning in this case 
corresponds to given values of the secondary data. 

Choosing k=\/K, we obtain 

w = S~ls 

in terms of the S matrix used in the text, and then 

P = (sfM-ls)(sfS-lMS'ls) 

Note that p is unaffected if s is changed by a constant 
factor. 

We now carry out the whitening transformation, as in 
the text, and normalize the signal vector as before. The 
result is 

_ (S<Pt)2 

" (S<P2t)' 

A unitary transformation is now applied to convert the 
signal vector to the final one used in the text, and the 
matrices are decomposed in the same way. This gives the 
simple expression 

P = 
<SP*A)2 

<ß>2\ >AA 

It is clear at this point that the PDF of p will be 
independent of the actual covariance matrix M. 

Using the Frobenius relations, we obtain 

iSP^AA   =   (&AA)2   + &AB&BA 

= (&AA)2(\+£AB^Ü2<£BA) 

and therefore 

1 
P = 

1 +2„ 

where 

2p = <£AB<$BB <^BA- 

Note that the RMB loss factor depends on the secondary 
data only, both A and B components, while r depends on 
the B components of both primary and secondary data. 

We proceed to analyze the two loss factors together, 
and begin by conditioning on the B components of the 
secondary data vectors, on which both loss factors 
depend. Then 

<Sm =   2  *(*)*<*)* 

is a constant matrix, positive definite, and nonsingular for 
all sets of conditioning vectors (except for a set of 
probability zero). We can therefore introduce the square 
root of this matrix and define the vectors 

Cfl s <£BB   ZB 

and 

CP — <$BB ^BA ■ 

With the conditioning, these quantities are zero-mean 
Gaussian vectors; the former is a linear function of the 
elements of the B component of the whitened primary 
vector, and the latter is expressible in terms of the 
secondary A components: 

Cp = *w 2 *<*)*<*)*• 

We use the subscript C to denote the present 
conditioning, and compute the conditional covariance 
matrices of these vectors: 

Ect>B%>B   —  ^BB      ^CZBZB^BB       =   ^BB 

and 

£c€p€p - ^BB W<=£fi 

where 

*BB 

K K 

W = Ec 2  *a(*)^(*)+ 2  ^(O^OV 
*=i j=i 

—    ZJ    2B(k)*B(k)     —   <$BB- 

Therefore 

Ec*p€j = SU 

and the two £ vectors are statistically equivalent under the 
conditioning. They therefore share the same final PDF 
when the conditioning is removed by averaging over the 
secondary B vectors. Since 

Sfl = (Ü is) 

and 

2p = a; *p) 

this proves that the loss factors themselves are statistically 
identical, and we continue with the loss factor r. 

Since £Ä is a Gaussian (N- 1) vector, the conditional 
joint PDF of its components is 

fc(b) = 
_ ll^gall    -(Sl<sMZB) 

TT N-\ 

The S matrix which enters here is itself subject to the 
Wishart PDF, which in the present case (in which the 
sample vectors are of dimension N- 1 and the covariance 
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matrix is equal to the identity) takes the form 

\\A\\K+l-N 

MA)       C(N-\,K)€ 

In this formula 

N{N-l)      N 

C(N,K) = IT n   {K-n)\ 

is the Wishart normalization factor. The volume element 
for this PDF will be written d(A). It is (N- l)2 

dimensional, ranging over the diagonal elements and the 
real and imaginary parts of the upper off-diagonals of all 
positive definite matrices, A. For our purpose, only the 
normalization integral of the Wishart PDF is required, 
hence we need not dwell on the detailed properties of this 
fascinating distribution. 

Since %B depends on the conditioning data only 
through the S matrix, its unconditioned PDF can be 
written 

/<£ '-*/-/ 
\\A\\e-*iA°fw(A)d(A). 

As in the text, we have replaced the exponential part of 
the Gaussian PDF by a trace, this time involving the open 
product matrix 

When we substitute for the Wishart PDF in the 
expression above, we encounter the integral 

This is the same as the normalization integral for another 
Wishart PDF, of dimensions N — 1 and K + 1, and for 
which the underlying sample vectors share the covariance 
matrix 

jH-tfo-i+ *)-'. 
The normalization factor for this slightly more general 
Wishart PDF is just 

C(N-\,K+l)\\Jl\\ ff+i _ C(N-\,K+1) 
ii/yv-i + <aK+i 

Cflv-ijr+i) 
= [i + (VBSB))K+1 

(the evaluation of the determinant uses the same Lemma 
utilized by Section HI. Combining these facts, we obtain 
the simple result 

MB) = 
TT 

1     C(N-\,K+1) 
C(N-\,K) N-\ [1   +   (^*)]-(*+1) 

K\ 
TtN~\K+\-N)\ 

(l+£fl)-<*+1>. 

The remainder of the derivation is identical to the 
final few steps given in [1, Appendix]. The norm of the 
vector £B is interpreted as the square of the radial 
coordinate in a (2A/-2)-dimensional Cartesian space, a 
change to polar coordinates is made, and the angular 
coordinates integrated out. This process yields the PDF of 
Sfl, and then a simple change of variable provides the 
desired PDF of r: 

fir) = 
K\ 

(K+\-N)\{N-2)\ 
_ r\N-2rK+\-N (1-r) 
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